Record number :
Title of article :
Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice
Author/Authors :
Akhoundzadeh, Kobra hysiology Research Center - Semnan University of Medical Sciences , Vakili, Abedin hysiology Research Center - Semnan University of Medical Sciences , Sameni, Hamid Reza Nervous System Stems Cells Research Center, Department of Anatomical Sciences - School of Medicine - Semnan University of Medical Sciences
Pages :
From page :
To page :
Abstract :
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) with T3 and mild treadmill exercise can decrease stroke complications in middle-aged mice. Methods: Under laser Doppler flowmetry monitoring, transient focal cerebral ischemia was produced by right Middle Cerebral Artery Occlusion (MCAO) for 45 min followed by 7 days of reperfusion in middle-aged mice. BMSCs (1×105) were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of triiodothyronine (T3) (20 µg/100 g/d SC) and 6 days of running on a treadmill. Infarct size, neurological function, apoptotic cells and expression levels of Glial Fibrillary Acidic Protein (GFAP) were evaluated 1 week after stroke. Results: Post-ischemic treatment with BMSCs or with T3 and or mild treadmill exercise alone or in combination did not significantly change neurological function, infarct size, and apoptotic cells 7 days after ischemia in middle-aged mice (P>0.05). However, the expression of GFAP significantly reduced after treatment with BMSCs and or T3 (P<0.01). Conclusion: Our findings indicate that post-stroke treatment BMSCs with exercise and thyroid hormone cannot reverse neuronal damage 7 days after ischemia in middle-aged mice. These findings further support that age is an important variable in stroke treatment
Keywords :
Cerebral ischemia , Combination , Bone marrow stromal cells , Thyroid hormone , Exercise , Apoptosis , Glial fibrillary acidic protein , Middle-aged , Mice
Journal title :
Basic and Clinical Neuroscience
Serial Year :
Link To Document :