Record number :
2235162
Title of article :
Analysis of air pollution data at a mixed source location using boosted regression trees
Author/Authors :
Carslaw، نويسنده , , David C. and Taylor، نويسنده , , Paul J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
3563
To page :
3570
Abstract :
This paper explores the use of boosted regression trees to draw inferences concerning the source characteristics at a location of high source complexity. Models are developed for hourly concentrations of nitrogen oxides (NOX) close to a large international airport. Model development is discussed and methods to quantify model uncertainties developed. It is shown that good explanatory models can be developed and further, allowing for interactions between model variables significantly improves the model fits compared with non-interacting models. Methods are used to determine which variables exert most influence over predicted concentrations and to explore the NOX dependency for each. Model predictions are used to estimate aircraft take-off contributions to total concentrations of NOX and determine how these predictions are affected by annual variations in meteorological conditions and runway use patterns. Furthermore, the results relating to the aircraft contributions to total NOX concentration are compared with those from a more detailed independent field campaign. Finally, we find empirical evidence that plumes from larger aircraft disperse more rapidly from the point of release compared with smaller aircraft. The reasons for this behaviour and the implications are discussed.
Keywords :
Aircraft , Stochastic gradient boosting , Model Averaging , source apportionment , Emissions , CART
Journal title :
Atmospheric Environment
Serial Year :
2009
Link To Document :
بازگشت