Record number :
2229684
Title of article :
Coupling high-resolution satellite imagery with ALS-based canopy height model and digital elevation model in object-based boreal forest habitat type classification
Author/Authors :
Rنsنnen، نويسنده , , Aleksi and Kuitunen، نويسنده , , Markku and Tomppo، نويسنده , , Erkki and Lensu، نويسنده , , Anssi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
14
From page :
169
To page :
182
Abstract :
We developed a classification workflow for boreal forest habitat type mapping. In object-based image analysis framework, Fractal Net Evolution Approach segmentation was combined with random forest classification. High-resolution WorldView-2 imagery was coupled with ALS based canopy height model and digital terrain model. We calculated several features (e.g. spectral, textural and topographic) per image object from the used datasets. We tested different feature set alternatives; a classification accuracy of 78.0% was obtained when all features were used. The highest classification accuracy (79.1%) was obtained when the amount of features was reduced from the initial 328 to the 100 most important using Boruta feature selection algorithm and when ancillary soil and land-use GIS-datasets were used. Although Boruta could rank the importance of features, it could not separate unimportant features from the important ones. Classification accuracy was bit lower (78.7%) when the classification was performed separately on two areas: the areas above and below 1 m vertical distance from the nearest stream. The data split, however, improved the classification accuracy of mire habitat types and streamside habitats, probably because their proportion in the below 1 m data was higher than in the other datasets. It was found that several types of data are needed to get the highest classification accuracy whereas omitting some feature groups reduced the classification accuracy. A major habitat type in the study area was mesic forests in different successional stages. It was found that the inner heterogeneity of different mesic forest age groups was large and other habitat types were often inside this heterogeneity.
Keywords :
Habitat type mapping , Object-Based Image Analysis , Multispectral imagery , ALS , random forest classifier , feature selection
Journal title :
ISPRS Journal of Photogrammetry and Remote Sensing
Link To Document :