Record number :
1469756
Title of article :
A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures
Author/Authors :
Bhatt، نويسنده , , Dhaval P. and Chen، نويسنده , , Xuesong and Geiger، نويسنده , , Jonathan D. and Rosenberger، نويسنده , , Thad A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
6
From page :
110
To page :
115
Abstract :
In mono-layered primary cell cultures baseline AMP and ADP levels are found nominally in the mid to low picomolar range and are thus difficult to measure with conventional HPLC methods that often require the pooling of samples or require indirect detection methods using radiotracers or enzyme coupled assays. To address this issue, we developed a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides and the adenylate energy charge in primary astrocyte cell cultures. To accomplish this, we optimized the fluorescence derivatization conditions and the HPLC parameters to achieve baseline separation and quantification of all adenine nucleotides. Nucleotides were converted to their respective 1, N6-etheno derivatives by incubating with chloroacetaldehyde at pH 4.5 and 60 °C for 60 min. Under these conditions, the loss of the adenine nucleotides due to hydrolysis was minimized with a derivatization yield of 94.1% for 1, N6-ethenoadenosine. The optimal concentration of tetrabutylammonium phosphate, the ion-pairing reagent, required to achieve a reproducible separation of the adenine nucleotides was found to be 0.8 mM. Calibration curves of nucleotide standards were linear within the range of 0.16–10.4 pmol for adenosine, 0.16–20.6 pmol for AMP, 0.15–19.2 pmol for ADP, and 0.15–19.5 pmol for ATP. The limits of detection and quantification for all adenine nucleotides were approximately 0.08 and 0.16 pmol, respectively. The intra- and inter-day variability for this method was less than 5.1 and 3.4%, respectively. This method was successfully used to measure all adenine nucleotides and an adenylate energy charge of 0.92 ± 0.02 in primary astrocyte cell cultures.
Keywords :
adenylate energy charge , AMP , Chloroacetaldehyde , Etheno-adenine nucleotides , fluorescence , Primary astrocyte cultures
Journal title :
Journal of Chromatography B
Serial Year :
2012
Link To Document :
بازگشت