Record number :
Title of article :
A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4,13-diaza-18-crown-6
Author/Authors :
Carreira-Barral، نويسنده , , Israel and Rodr?guez-Rodr?guez، نويسنده , , Aurora and Regueiro-Figueroa، نويسنده , , Mart?n and Esteban-G?mez، نويسنده , , David and Platas-Iglesias، نويسنده , , Carlos and Blas، نويسنده , , Andrés de and Rodr?guez-Blas، نويسنده , , Teresa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
From page :
To page :
Abstract :
Herein, we report the synthesis and structural characterization of alkaline-earth complexes with the bibracchial lariat ethers N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 (L2) and N,N′-bis(benzimidazol-2ylmethyl)-4,13-diaza-18-crown-6 (L4). The X-ray crystal structures of the Ca(II) and Sr(II) complexes of L2 show the pendant arms of the ligand disposed on opposite sides of the macrocyclic mean plane, which results in an anti conformation in the solid state. A similar anti conformation is also observed for the Mg(II) complex of L4, whereas the Ca(II), Sr(II) and Ba(II) complexes of L4 adopt a syn conformation in the solid state, with the two pendant arms pointing at the same side of the crown moiety. However, a different behavior is observed in solution. Indeed, 1H and 13C NMR spectroscopy, in combination with density functional theory (DFT) calculations performed at the B3LYP level, suggests that the [M(L2)]2+ and [M(L4)]2+ (M = Ca, Sr or Ba) complexes exist in solution as a mixture of syn and anti isomers involved in a dynamic equilibrium. Our results also show that the relative abundance of the syn conformation increases as the ionic radius of the metal ion increases and, furthermore, for a given metal ion the proportion of syn isomer is always higher for L4 complexes than for L2 ones.
Keywords :
Alkaline-earth complexes , Crown Ethers , crystal structures , Macrocyclic ligands
Journal title :
Serial Year :
Link To Document :