Record number :
1286088
Title of article :
Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabieshan and Sulu, China
Author/Authors :
Douglas Rumble III. ، نويسنده , , Qingchen Wang، نويسنده , , Ruyuan Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
79
To page :
95
Abstract :
Marbles from Dabieshan and Sulu, China, suffered ultra high pressure (UHP) metamorphism in the coesite–eclogite facies at approximately 700°C and 30 kbars during Triassic continental collision and subduction. The marbles range in isotopic composition from +7 to +25 δ18OVSMOW and from 0 to +6 δ13CVPDB. High δ13C values are representative of unmodified protoliths and are similar to those of 13C-enriched Sinian carbonate rocks from the Yangtze craton. High oxygen isotope ratios reflect pristine protoliths but the low values may have been caused by infiltration of low 18O meteoric water during diagenesis and dolomitization, by fracture-controlled infiltration of water during subduction, by metamorphic mineral reactions, or by a combination of these processes. No evidence of regional isotopic transport during UHP metamorphism has been found. Sampling on scales of 1 to 100 m shows marbles to be inhomogeneous in both carbon and oxygen isotopes. Only samples separated by less than 10 cm have equilibrated oxygen and carbon isotope compositions. Limited isotopic equilibration between adjacent rocks is consistent with the preservation of unaltered UHP minerals and indicates that the metamorphic fluid–rock system was rock-dominated during and following peak metamorphism. A freely flowing, pervasive fluid phase was not present during UHP metamorphism. There is no evidence of isotopic exchange between marble and the upper mantle into which it was subducted. Correlation of geochemical similarities of UHP marbles with Sinian limestones implies that the subducted edge of the Yangtze craton extends at least as far north as the coesite–eclogite facies rocks of Dabieshan. Deposition of protolith carbonates may have taken place in a cold climate either preceding or following but not coincident with Neoproterozoic glaciation.
Keywords :
stable isotope geochemistry , Oxygen isotope geochemistry , Ultrahigh-pressure metamorphism , CHINA , Carbon isotope geochemistry , Continental collision
Journal title :
lithos
Link To Document :