Record number :
1251958
Title of article :
Energy-absorbing effectiveness factor
Author/Authors :
Norman Jones، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
754
To page :
765
Abstract :
A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy absorbers made from different materials. The influence of material properties and various geometrical parameters on the value of the dimensionless parameter has been examined for the static and dynamic axial crushing behaviours of thin-walled sections. The influence of foam fillings and the stiffening of circular and square tubes is examined. It transpires that, according to the energy-absorbing effectiveness factor, an axially crushed circular tube is the most effective structural shape. Moreover multi-cellular cross-sections, and axial stiffening, increases the effectiveness of thin-walled sections. In these latter two cases, the energy absorbed by the additional material in a tensile test is included in the denominator of the energy-absorbing effectiveness factor. The influence of foam filling was found to increase the energy-absorbing effectiveness factor even though the additional energy absorbed by the foam is retained in the denominator. It was also noted that a circular tube, crushed axially either statically or dynamically, and made from an aluminium alloy, had a larger energy-absorbing effectiveness factor than a similar one made from a stainless steel, because the steel had a larger rupture strain which was not required during the deformation of the particular geometry examined.
Keywords :
Square and circular Tubes , Top-hat and double-hat sections , Multi-cell sections , Energy-absorbing effectiveness factor , Impact
Journal title :
International Journal of Impact Engineering
Link To Document :