Record number :
Title of article :
Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding
Author/Authors :
Nandi، Arup Kumar نويسنده , , Pratihar، Dilip Kumar نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
From page :
To page :
Abstract :
We have developed, in this paper, a genetic-fuzzy system, in which a genetic algorithm (GA) is used to improve the performance of a fuzzy logic controller (FLC). The performance of an FLC depends on its knowledge base (KB), which consists of both the data base (membership function distributions of the variables) as well as rule base. In the developed genetic-fuzzy system, the KB of the FLC is optimized, off-line, using a GA. Three approaches are developed, in the present work. In the first approach, the membership function distributions of the variables are assumed to be triangular, whereas a second-order polynomial function and a third-order polynomial function are used in the second and third approaches, respectively. The results of these approaches are compared for making prediction of surface finish and power requirement in grinding, a machining process used to generate smooth surface on the job. For some of the test cases, comparisons are also made of the results predicted by the genetic-fuzzy system with those obtained through the real experiments.
Keywords :
Application-production research , Genetic-fuzzy system , prediction , grinding , Surface finish , Power requirement
Journal title :
Link To Document :